
Ninth Annual Conference on
Advances in Cognitive Systems

August 15–18, 2021

Hierarchical Problem Networks for
Knowledge-Based Planning

Pat Langley
Institute for the Study of Learning and Expertise

Howard E. Shrobe
Massachusetts Institute of Technology

Domain expertise plays an essential role in both human and
machine intelligence.

This holds across all cognition, but we will focus on sequential
goal-directed activities.
• People regularly use such knowledge to carry out routine but

complex procedures to achieve their goals.

• Miller, Galanter, and Pribram (1960) referred to these mental
structures as plans, although we now use other terms.

In this talk, we offer a new approach – hierarchical problem
networks – to representing and using procedural expertise.

Introductory Remarks

2

We desire a theory of procedural expertise that explains major
features of human problem solving, including the ability to:

• Generate novel action sequences that achieve sets of goals

• Consider both goals and situations when selecting actions

• Decompose complex activities into simpler ones when needed

• Use knowledge to guide or constrain search when available

• Carry out search through a problem space when necessary

Existing frameworks for knowledge-based planning support
these abilities, but they also have limitations.

Target Abilities

3

Hierarchical task networks (HTNs) exhibit these abilities; they
encode knowledge as sets of methods, each with:

• A task name and arguments

• State conditions under which the method applies

• A sequence of component subtasks

Such knowledge structures can encode conditional, disjunctive,
and even recursive procedures.

They are useful for generating, executing, and understanding
complex goal-directed activities.

Hierarchical Task Networks

4

Hierarchical goal networks (HGNs) are similar but differ in
that each method specifies:

• A general goal that it achieves

• State conditions under which the method applies

• A sequence of component subgoals

HGNs cannot encode arbitrary procedures like HTNs, but they
support goal-directed processing more directly.

Both frameworks combine ideas from classical programming
languages with modular, relational notations.

Hierarchical Goal Networks

5

Despite their strengths, classic HTNs and HGNs cannot state
general procedures for problems with goal interactions.

• E.g., an HTN for building towers in the Blocks World needs
a separate method for each number of target blocks:

(build-tower ?X ?Y), (build-tower ?X ?Y ?Z), and so forth

• We can specify more general HTN programs, but they would
then require search to find successful plans.

HGNs also need one method for each type of tower, as they
cannot encode knowledge about goal orderings.

We have developed a new framework – hierarchical problem
networks – that overcomes this limitation.

Limits of HTNs and HGNs

6

The theory of hierarchical problem networks (HPNs) makes a
number of familiar representational assumptions:

• A state is a set of relational facts that describe a situation.
• A goal is a desired relation and a problem is a set of goals.
• A hierarchical plan is a recursive decomposition of a problem

into subproblems.
• Procedural knowledge is a set of methods that specify how to

decompose problem goals into subproblems.
• Each method specifies state-related conditions under which a

decomposition is acceptable.
The HPN framework shares these postulates with hierarchical goal
networks, its closest relative.

Representational Postulates

7

However, the HPN theory also makes some more distinctive
representational claims:

• Each method specifies how to decompose an entire problem
(a set of goals) into an ordered set of subproblems.

• Each method specifies goal-related conditions under which a
decomposition is not acceptable.

• Each method’s head is some effect of an operator O, some of O’s
conditions as a first subproblem, and O as a second subproblem.

These structural constraints give HPNs a very different feel from
classic HTNs or even HGNs.
They come closer to generalized partial-order plans that can handle
tasks with an arbitrary number of objects.

Representational Postulates

8

HPN Methods for Blocks World

9

HIERARCHICAL PROBLEM NETWORKS

Table 3. Six methods for the Blocks World that include a head, state conditions, optional goal conditions, and
one or two subproblems. In each case, the final subproblem refers to application of an operator. This HPN
enodes a procedure that solves a broad class of problems in the domain without the need for search.

((on ?X ?Y)
:conditions ((block ?X)(block ?Y))
:subproblems (((clear ?Y)(holding ?X))((stack ?X ?Y)))
:unless-goals ((on ?Y ?ANY)(ontable ?Y)))

((holding ?X)
:conditions ((block ?X)(ontable ?X))
:subproblems (((clear ?X)(hand-empty))((pickup ?X)))
:unless-goals ((clear ?ANY)))

((holding ?X)
:conditions ((block ?Y)(block ?X)(on ?X ?Y))
:subproblems (((clear ?X)(hand-empty))((unstack ?X ?Y)))
:unless-goals ((clear ?ANY)))

((clear ?Y)
:conditions ((block ?Y)(block ?X)(on ?X ?Y))
:subproblems (((clear ?X)(hand-empty))((unstack ?X ?Y))))

((hand-empty)
:conditions ((block ?X)(holding ?X))
:subproblems (((putdown ?X)))
:unless-goals ((clear ?ANY)))

((ontable ?X)
:conditions ((block ?X))
:subproblems (((holding ?X))((putdown ?X))))

and they ‘return’ a result for each subproblem that is encoded as a hierarchical plan. The major
disconnect lies in HPD’s reliance on goals, rather than routine names, to index and invoke methods,
but these serve the same function as traditional procedural calls.

We should also consider the form of solutions that the HPD architecture generates. Table 5
shows a hierarchical plan for the initial state and problem in Table 2, with indentations indicating
levels in the solution. The top-level problem,((on A B)(on B C)(ontable C)), appears in
the first line. The plan breaks this down into three subproblems: ((clear C)(holding B)),
((stack B C)), and ((ontable C)(on A B)). The first subproblem in turn has three sub-
problems: ((clear B) (hand-empty)), ((pickup B)), and ((clear C)). Some termi-
nal nodes involve applying an operator, whereas others correspond to subproblems that the current
state already satisfies, and do not require any further effort. This solution has a right-branching
structure, but other plans, say for clearing a block embedded in a tower, will be left branching.

4.2 Processing in the HPD Architecture

In accordance with the theory, HPD operates in cycles. On each iteration, processing focuses on
the topmost problem P in the problem stack in the context of the current state S. The primary
steps include pushing new subproblems of P onto the stack, popping P from the stack, applying

9

This HPN knowledge base for the Blocks World has six methods.

Each specifies
a head, a set of
state conditions,
an ordered set
of subproblems,
and a set of goal
conditions.

The latter serve
as constraints
on the order of
goal processing.

HPN Operators for Blocks World

10

P. LANGLEY AND H. E. SHROBE

Table 4. Four operators for the Blocks World, each specifying an action (head), conditions, and effects.

((stack ?X ?Y)
:conditions ((block ?X)(block ?Y)(holding ?X)(clear ?Y))
:effects ((on ?X ?Y)(hand-empty)(not(clear ?Y))(not(holding ?X))))

((pickup ?X)
:conditions ((block ?X)(ontable ?X)(clear ?X)(hand-empty))
:effects ((holding ?X)(not(hand-empty))(not(ontable ?X))))

((unstack ?X ?Y)
:conditions ((block ?X)(block ?Y)(on ?X ?Y)(clear ?X)(hand-empty))
:effects ((clear ?Y)(holding ?X)(not(on ?X ?Y))(not(hand-empty))))

((putdown ?X)
:conditions ((block ?X)(holding ?X))
:effects ((ontable ?X)(hand-empty)(not(holding ?X))))

an operator to update S, and adding or removing elements from the hierarchical plan. The action
that HPD takes depends on the results of comparing the problem P, the state S, and the heads and
conditions of methods. One of four situations will hold, each with an associated response:

• If the topmost problem P matches the current state S (i.e., all of P ’s goals are satisfied), then
HPD simply pops P from the problem stack.

• If the topmost problem P is to apply an operator O and if O ’s conditions match the current state
S, then HPD instantiates O ’s effects, uses them to update S, and removes P from the stack.

• If a method instance M is applicable to problem P in state S, then HPN pushes M ’s subproblems
onto the problem stack and inserts them as children of P in the hierarchical plan.

• If the plan length exceeds a limit, or if no method applies to problem P in state S, then HPD pops
P from the stack and removes P and its siblings from their parent in the hierarchical plan.

The final situation will not occur during a problem-solving run if appropriate methods, with the
necessary conditions, are known. In such cases, HPD will select a reasonable decomposition on
each cycle and find a hierarchical plan without needing to backtrack. In contrast, if the system lacks
these conditions, then it can be led astray and must carry out search before it finds a solution.

Let us consider in more detail these stages of processing. To match a method M against a
problem P and state S, HPD first compares the goals in M ’s head H with P ’s unsatisfied goals G
(i.e., those not satisfied by S). If H unifies with G, then the system compares M ’s conditions C with
the state S, subject to bindings from the head. If C matches against S in a consistent way, then HPD
compares the goal descriptions U in M ’s :unless-goals field with P ’s unsatisfied goals, again
taking bindings into account. If U matches successfully against G, then the method instance fails
because the unless condition blocks its applicability.

For example, suppose the top problem on the stack is the goal set ((on A B)(on B C))
and the current state is

((block A)(block B)(block C)(ontable A)(ontable B)
(ontable C)(clear A)(clear B)(clear C)(hand-empty)).

10

Here are six operators for the Blocks World that describe the effects
of actions under certain conditions.

These are equivalent to operators in STRIPS or PDDL notation, but
they are stated in slightly different HPN syntax.

A Hierarchical Plan for Blocks World

11

HIERARCHICAL PROBLEM NETWORKS

Table 5. A hierarchical plan that solves the problem in Table 2 (b) given the initial state in Table 2 (a).

((on A B)(on B C)(ontable C))
((clear C)(holding B))

((clear B)(hand-empty))
((pickup B))
((clear C))

((stack B C))
((ontable C)(on A B))

((clear B)(holding A))
((clear A)(hand-EMPTY))
((pickup A))
((clear B))

((stack A B))
((ontable C))

In this situation, the head of the first method in Table 3, (on ?X ?Y), matches the problem de-
scription in two distinct ways. One goal, (on A B), matches with bindings ?X ! A and ?Y
! B, while the other goal, (on B C), matches with bindings ?X ! B and ?Y ! C. The
:conditions field matches successfully for both sets of bindings, but the first match is rejected
because the :unless-goals condition, (on ?Y ?ANY), matches a goal, (on B C), that is
not satisfied. No analogous unsatisfied goal exists for the second match, so HPD treats it as appli-
cable. Such goal conditions constrain the order in which it addresses a problem’s goals.

Once HPD has found a set of acceptable methods instances, it selects one of them for applica-
tion. The current implementation picks a candidate at random, but it could instead incorporate a
mechanism for conflict resolution like that used in production systems (Neches, Langley, & Klahr,
1987). For instance, the system might favor methods whose heads unify with more unsatisfied prob-
lem goals or whose subproblems introduce fewer unsatisfied goals. Such preferences would serve
as heuristics to guide search through the space of decompositions. They would not be guaranteed to
reduce effort or to generate better plans, but they could aid performance substantially on average.

After the architecture has selected a method instance M to decompose the topmost problem P,
it instantiates M’s subproblems based on the accumulated variable bindings and adds them on top
of the problem stack. If M includes two subproblems, S1 and S2, then HPD introduces not only S1
and S2, in that order, but also a third subproblem that comprises any goals in P not mentioned in
M’s head, including ones that are currently satisfied. In some situations, this set difference will be
empty, but in other cases goals will remain that the system must address later. In addition to adding
these subproblems to the stack, HPD stores them as children of P in the hierarchical plan.

Returning to our example, the first method in Table 3 specifies two subproblems. After sub-
stituting bound variables, these become ((holding B)(clear C)) and ((stack B C)),
which HPD pushes onto the problem stack. However, because the current problem contains two
goals, ((on A B)(on B C)), and the decomposition only addresses one of them, the system
also adds a third subproblem – ((on A B)) – that includes the remaining goal. After the appli-
cation of this method instance, the stack retains the original top-level problem, but three new ones

11

P. LANGLEY AND H. E. SHROBE

Table 2. A state description from the Blocks Worlds encoded as a set of relational facts and a problem de-
scription denoted as a set of goals.

(a) Initial state:
((block A)(block B)(block C)(block D)
(ontable A)(ontable B)(ontable C)(ontable D)
(clear A)(clear B)(clear C)(clear D)(hand-empty))

(b) Goal description:
((on A B)(on B C)(ontable C))

C on the table, but they do not mention ontable, clear, holding, or hand-empty, nor do
they refer to block D. Problem statements in HPD may also include unbound variables as arguments
of goal predicates, although they do not appear in this example.

Table 3 presents a hierarchical problem network for the Blocks World. Each of the four methods
includes a head, a set of state conditions, an optional set of goal conditions, and an ordered set of
subproblems. For instance, the first method’s head is (on ?X ?Y), which refers to a goal in the
current problem. The :conditions field specifies this rule should only apply when the current
state includes (block ?X) and (block ?Y). In addition, the :unless-goals field indicates
that the method should not apply if there exists an unsatisfied goal of the form (on ?Y ?ANY),
where ?Y is bound in an earlier field but ?ANY is not, or the form (ontable ?Y). Finally, the
:subproblems field lists two subproblems to replace the goal in the head. The first specifies the
goals ((holding ?X)(clear ?Y)) and the second to apply the operator (stack ?X ?Y).

Operators are a special type of method that describe the conditional effects of actions. Table 4
shows four operators from the Blocks World, in HPD syntax, that many readers will find famil-
iar. Each entry specifies a name and arguments in its head, conditions that must match the current
state for application, and changes to the state when such application occurs. For example, the first
operator has the head (stack ?X ?Y) and the conditions (holding ?X) and (clear ?Y).
The effects are that these relations cease to hold, but that (on ?X ?Y) and (hand-empty) be-
come true. Operators do not include :unless-goals conditions, because they deal with isolated
actions, or a :subproblems field, because they serve as terminal nodes in plans.

As noted earlier, each method in a hierarchical problem network has a clear relation to some
operator. For example, the head of the first method in Table 3, (on ?X ?Y), is an effect of the
operator stack in Table 4. The first subproblem contains conditions of the operator achievable
by other actions, whereas the second subproblem contains the operator’s head, indicating that it
should be applied after its conditions are met. A similar relation holds between the second method
in Table 3 and the operator pickup, although one of the latter’s conditions, (ontable ?X), is in
the method’s :conditions field rather than its first subproblem. The reason is that one cannot
achieve the goal (ontable ?X) without first achieving (holding ?X), which is circular.

HPD’s formalism for expertise maps directly onto classic features of procedures or programs.
Each method corresponds to a conditional statement that applies only when relevant. Moreover, a
method specifies how to decompose a problem into subproblems, which correspond to subroutine
calls, some of which lead to recursion. Programs terminate upon reaching an applicable operator

8

Here is an HPN plan for the
initial state and problem goals
that are shown above.

Each nonterminal problem
has three subproblems, with
the second being an operator.

This plan is right branching,
but left-branching and mixed
structures can also occur.

The theory of hierarchical problem networks also incorporates
postulates about processing:

• Planning recursively decomposes a problem into subproblems
to find an operator sequence that achieves the problem’s goals.

• Planning iteratively examines the topmost element on the
problem stack and places new subproblems above it.

• Problem decomposition relies on three main subprocesses:
method matching, method selection, and method expansion.

• Planning involves search through a space of decompositions
defined by methods, problem goals, and initial state.

However, it shares these assumptions with HTNs and HGNs;
the key difference lies in their representations.

Processing Postulates

12

The HPD planner implements these processing postulates with
a control cycle that covers four situations:

• If the topmost problem P matches the current state S (all goals
are satisfied), then pop P from the problem stack.

• If topmost problem P is to apply operator O and O’s conditions
match state S, then use O’s effects to update S and remove P.

• If a method M applies to problem P in state S, then push M’s
subproblems onto stack and add them as P’s children in plan.

• If the plan is too long or no method applies to problem P, then
pop P from stack and remove P and its siblings from the plan.

Given appropriate knowledge, HPD mimics a deterministic
procedure, but it falls back on search when needed.

The HPD Interpreter

13

Consider the HPN method for getting one block on top of another:
((on ?X ?Y)
:conditions ((block ?X) (block ?Y))
:subproblems (((clear ?Y) (holding ?X)) ((stack ?X ?Y)))
:unless-goals ((on ?Y ?ANY) (ontable ?Y)))

Suppose the top problem is ((on A B) (on B C)) and the state is:
((block A) (block B) (block C) (ontable A) (ontable B) (ontable C)
(clear A) (clear B) (clear C) (hand-empty))

Here the head (on ?X ?Y) matches in two different ways:
• (on A B) matches with bindings ?X → A and ?Y → B
• (on B C), matches with bindings ?X → B and ?Y → C

But the first match fails because the :unless-goals condition,
(on ?Y ?ANY), matches a goal, (on B C), that is not satisfied.

Matching an HPN Method

14

To demonstrate HPD’s abilities, we developed HPN knowledge
bases for three planning domains:

• Blocks World – Changing an initial layout to a target layout
• Six methods, four operators, six predicates, twenty problems

• Logistics – Transporting packages from initial to target locations
• Seven methods, six operators, nine relations, ten problems

• Depots – Moving crates between pallets and stacking them
• Eight methods, five operators, twelve predicates, ten problems

For every problem in each domain, it found a hierarchical plan
(from 4 to 18 steps) without backtracking.

This shows HPNs can represent general procedures effectively.

Demonstrations of HPD’s Abilities

15

Lesion Studies of HPD Planning

16

0 0.5 1 1.5 2 2.5
State and goal conditions

0
0.

5
1

1.
5

2
2.

5
O

nl
y

st
at

e
co

nd
itio

ns

Depots
Logistics
Blocks World

Scatter plot that compares effort by HPD programs with both state
and goal conditions to one with only state conditions.

Each axis shows
CPU time on a
logarithmic scale.

Each point is an
average of 30
separate runs.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
State and goal conditions

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
O

nl
y

go
al

 c
on

di
tio

ns

Depots
Logistics
Blocks World

Lesion Studies of HPD Planning

17

Scatter plot that compares effort by HPD programs with both state
and goal conditions to one with only goal conditions.

Each axis shows
CPU time on a
logarithmic scale.

Each point is an
average of 30
separate runs.

0 1 2 3 4 5 6 7
Number of irrelevant blocks

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
lo

g(
C

PU
 s

ec
s

x
10

^4
)

Neither
Goal
State
Both

Scaling Studies of HPD Planning

18

Scaling curves that show time to solve Blocks World problems for
different HPD programs as function of number of irrelevant blocks.

Each curve shows
CPU time on a
logarithmic scale.

Each point is an
average of 30
separate runs.

0 1 2 3 4 5 6 7 8 9 10
Number of interacting goals

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
lo

g(
C

PU
 s

ec
s

x
10

^4
)

Neither
Goal
State
Both

Scaling Studies of HPD Planning

19

Scaling curves that show time to solve Blocks World problems for
different HPD programs as function of number of interacting goals.

Each curve shows
CPU time on a
logarithmic scale.

Each point is an
average of 30
separate runs.

The theory of hierarchical problem networks incorporates key
ideas from the previous literature:
• Procedural knowledge is organized into modular, hierarchical

methods (Slagle, 1963; Lloyd, 1984; Nau et al., 2003)
• But HPNs state how to decompose problems, not tasks or goals
• Knowledge can specify what goal orderings are acceptable

(Laird, 2012; Minton, 1988; Goldman & Kuter, 2019)
• But HPNs incorporate goal constraints into methods themselves
• Problem solving decomposes problems into subproblems

(Newell et al., 1960; Jones & Langley, 2005; Marsella, 1993)
• But HPNs emphasize procedures rather than heuristic search

Thus, the theory offers a new and promising alternative for
knowledge-based planning.

Relation to Earlier Research

20

Comparison to Other Frameworks

21

HIERARCHICAL PROBLEM NETWORKS

Table 1. Comparison of hierarchical problem networks with three other approaches to planning in terms of
seven characteristics. The symbol • indicates that a feature is present, whereas � denotes that a feature is
absent. Subsection 3.1 discusses the distinguishing characteristics in greater detail.

REPRESENTATIONAL AND Classic HTN HGN HPN
PROCESSING ASSUMPTIONS Planners Planners Planners Planners

Generate sequential plans that achieve goals • • • •
Decompose complex activities hierarchically � • • •
Methods require that relations hold in state � • • •
Methods indexed by goals they achieve � � • •
Decompose problems into subproblems � � � •
Methods require that goals are not unsatisfied � � � •
Methods are linked to primitive operators � � � •

sets of goals – rather than decomposing individual tasks or goals. This feature enables a second
one: the ability to specify methods that apply only when certain goals are not unsatisfied in the
current state, which in turn constrains the order in which these goals are addressed. Finally, HPNs
assume that each method is linked directly to a primitive operator that determines its head and
subproblems. Together, these assumptions provide greater representational power than traditional
hierarchical techniques, offering an effective and compact way to encode procedural expertise while
still supporting heuristic search when such knowledge is limited.

4. The HPD Problem-Solving Architecture
We have developed a problem-solving architecture – the Hierarchical Problem Decomposer (HPD)
– that incorporates these postulates. As Langley (2018) notes, there are usually many ways to make
a theory operational and thereby testable, and here we present only one alternative. We start by
examining HPD’s representational formalism, then describe the mechanisms that operate over it.

4.1 Representation in the HPD Architecture

The HPD architecture embodies the representational commitments listed in the previous section,
reflecting them in its syntax for encoding long-term and short-term structures, as in many cognitive
architectures (Langley, Laird, & Rogers, 2009). This provides a programming language for denoting
states, problems, and procedures that underlie problem solving. The notation has much in common
with those used in logic programming (Lloyd, 1984) and hierarchical task networks (Nau et al.,
2003), but there are also some important differences with implications for processing.

For example, Table 2 (a) specifies a state from the Blocks World that involves 13 distinct literals.
These use the predicates on, ontable, clear, holding, and hand-empty, which can share
arguments to describe relational configurations. Similarly, Table 2 (b) presents a problem from the
Blocks World. This also consists of relational literals, but it refers to desired state elements and it
omits ones that hold no interest. Here the problem’s goals specify a tower with A on B, B on C, and

7

Hierarchical problem networks have similarities to earlier planning
frameworks, but they also introduce important differences.

This table compares HPNs with HTNS, HGNs, and classic planners
along seven dimensions that distinguish them.

In future research, we plan to augment the HPN theory and its
implementation in HPD to:
• Favor methods with fewer unsatisfied goals in subproblems
• This should reduce the current reliance on state conditions
• Allow OR branches in HPNs for nondeterministic outcomes
• This should support information-gathering operators
• Incorporate durative operators with temporal constraints
• This will support procedures that include parallel actions
• Integrate HPN problem solving with partial-order planning
• Use methods if available but chain backward when needed

The last extension may hold the key to learning state and goal
conditions on HPN methods analytically.

Plans for Future Work

22

This talk introduced hierarchical problem networks, a new
representation for procedural expertise that:
• Specifies how to decompose problems into subproblems
• Includes state conditions that constrain bindings on variables
• Includes goal conditions that constrain order of goal processing

We also described HPD, an planning architecture that:
• Includes an interpreter that generates hierarchical plans
• Mimics deterministic procedures given the right knowledge
• Falls back on search when methods are lacking conditions

Experiments identified how state and conditions reduce search
and aid scaling to problem complexity.

Summary Remarks

23

