Hierarchical Problem Networks for
Knowledge-Based Planning

Pat Langley
Institute for the Study of Learning and Expertise

Howard E. Shrobe
Massachusetts Institute of Technology

Ninth Annual Conference on

Advances in Cognitive Systems
August 15-18, 2021

Introductory Remarks

Domain expertise plays an essential role in both human and
machine intelligence.

This holds across all cognition, but we will focus on sequential
goal-directed activities.

e People regularly use such knowledge to carry out routine but
complex procedures to achieve their goals.

e Miller, Galanter, and Pribram (1960) referred to these mental
structures as plans, although we now use other terms.

In this talk, we offer a new approach — hierarchical problem
networks — to representing and using procedural expertise.

Target Abilities

We desire a theory of procedural expertise that explains major
features of human problem solving, including the ability to:

e Generate novel action sequences that achieve sets of goals

e Consider both goals and situations when selecting actions

e Decompose complex activities into simpler ones when needed
e Use knowledge to guide or constrain search when available

e Carry out search through a problem space when necessary

Existing frameworks for knowledge-based planning support
these abilities, but they also have limitations.

Hierarchical Task Networks

Hierarchical task networks (HTNs) exhibit these abilities; they
encode knowledge as sets of methods, each with:

* A task name and arguments
 State conditions under which the method applies

* A sequence of component subtasks

Such knowledge structures can encode conditional, disjunctive,
and even recursive procedures.

They are useful for generating, executing, and understanding
complex goal-directed activities.

Hierarchical Goal Networks

Hierarchical goal networks (HGNs) are similar but differ in
that each method specifies:

* A general goal that it achieves
 State conditions under which the method applies

* A sequence of component subgoals

HGNs cannot encode arbitrary procedures like HTNs, but they
support goal-directed processing more directly.

Both frameworks combine ideas from classical programming
languages with modular, relational notations.

Limits of HTNs and HGNs

Despite their strengths, classic HTNs and HGNs cannot state
general procedures for problems with goal interactions.

» E.g., an HTN for building towers in the Blocks World needs
a separate method for each number of target blocks.:

(build-tower ?X ?Y), (build-tower ?X ?Y ?Z), and so forth

* We can specify more general HI'N programs, but they would
then require search to find successful plans.

HGNs also need one method for each type of tower, as they
cannot encode knowledge about goal orderings.

We have developed a new framework — hierarchical problem
networks — that overcomes this limitation.

Representational Postulates

The theory of hierarchical problem networks (HPNs) makes a
number of familiar representational assumptions:

o A state 1s a set of relational facts that describe a situation.

e A goal is a desired relation and a problem is a set of goals.

e A hierarchical plan is a recursive decomposition of a problem
into subproblems.

e Procedural knowledge is a set of methods that specify how to
decompose problem goals into subproblems.

e Each method specifies state-related conditions under which a
decomposition is acceptable.

The HPN framework shares these postulates with hierarchical goal
networks, its closest relative.

Representational Postulates

However, the HPN theory also makes some more distinctive
representational claims:

e Each method specifies how to decompose an entire problem
(a set of goals) into an ordered set of subproblems.

e Each method specifies goal-related conditions under which a
decomposition is not acceptable.

e Each method’s head 1s some effect of an operator O, some of O’s
conditions as a first subproblem, and O as a second subproblem.

These structural constraints give HPNs a very different feel from
classic HTNs or even HGN:ss.

They come closer to generalized partial-order plans that can handle
tasks with an arbitrary number of objects.

HPN Methods for Blocks World

This HPN knowledge base for the Blocks World has six methods.

Each specifies

a head, a set of
state conditions,
an ordered set
of subproblems,
and a set of goal
conditions.

The latter serve
as constraints
on the order of
goal processing.

((on ?X ?Y)
:conditions
:subproblems
:unless—goals

((holding ?X)
:conditions
:subproblems
:unless—goals

((holding ?X)
:conditions
:subproblems
:unless—goals

((clear ?Y)
:conditions
:subproblems

((hand—empty)
:conditions
:subproblems
:unless—goals

((ontable ?X)
:conditions
:subproblems

((block 7?X) (block 7?Y))
(((clear ?Y) (holding ?X)) ((stack ?X ?Y)))
((on ?Y 7?ANY) (ontable ?Y)))

((block 7?7X) (ontable 7?X))
(((clear 7?X) (hand-empty)) ((pickup ?X)))
((clear 2?ANY)))

((block ?Y) (block ?X) (on ?X ?Y))
(((clear ?X) (hand-empty)) ((unstack ?X ?Y)))
((clear 2?ANY)))

((block ?Y) (block ?X) (on ?X ?Y))
(((clear ?X) (hand-empty)) ((unstack ?X ?Y))))

((block ?X) (holding ?X))
(((putdown ?X)))
((clear ?ANY)))

((block ?2X))
(((holding ?X)) ((putdown ?X))))

HPN Operators for Blocks World

Here are six operators for the Blocks World that describe the effects
of actions under certain conditions.

((stack ?X ?Y)

:conditions ((block ?X) (block ?Y) (holding ?X) (clear ?Y))

:effects ((on ?X ?Y) (hand-empty) (not (clear ?Y)) (not (holding ?X))))
((pickup ?2X)

:conditions ((block ?X) (ontable ?X) (clear ?X) (hand-empty))

:effects ((holding ?X) (not (hand-empty)) (not (ontable ?X))))

((unstack ?X ?Y)

:conditions ((block ?X) (block ?Y) (on ?X ?Y) (clear ?X) (hand-empty))
:effects ((clear ?Y) (holding ?X) (not (on ?X ?Y)) (not (hand-empty))))
((putdown 7?X)

:conditions ((block ?X) (holding ?X))

:effects ((ontable ?7X) (hand-empty) (not (holding ?X))))

These are equivalent to operators in STRIPS or PDDL notation, but
they are stated in slightly different HPN syntax.

10

A Hierarchical Plan for Blocks World

(a) Initial state:
((block A) (block B) (block C) (block D)
(ontable A) (ontable B) (ontable C) (ontable D)
(clear A) (clear B) (clear C) (clear D) (hand—empty))
(b) Goal description:
((on A B) (on B C) (ontable C))

Here 1s an HPN plan for the ((on A B) (on B C) (ontable C))
initial state and problem goals ({clear C) (holding B))
((clear B) (hand—-empty))
that are shown above. ((pickup B))
. ((clear C))
Each nonterminal problem ((stack B C))
has three subproblems, with ((ontable C) (on A B))
h_ d b . ((clear B) (holding A))
the second being an operator. ((clear A) (hand—EMPTY))
. o , ((pickup A))
This plan is right branching, ((clear B))
but left-branching and mixed ((stack A B))
((ontable C))

structures can also occur.

11

Processing Postulates

The theory of hierarchical problem networks also incorporates
postulates about processing:

e Planning recursively decomposes a problem into subproblems

to find an operator sequence that achieves the problem’s goals.

e Planning iteratively examines the topmost element on the
problem stack and places new subproblems above it.

e Problem decomposition relies on three main subprocesses:
method matching, method selection, and method expansion.

e Planning involves search through a space of decompositions
defined by methods, problem goals, and initial state.

However, 1t shares these assumptions with HTNs and HGNs;
the key difference lies 1n their representations.

12

The HPD Interpreter

The HPD planner implements these processing postulates with
a control cycle that covers four situations:

o [f the topmost problem P matches the current state S (all goals
are satisfied), then pop P from the problem stack.

e [f topmost problem P is to apply operator O and O's conditions
match state S, then use O effects to update S and remove P,

o [f a method M applies to problem P in state S, then push M's
subproblems onto stack and add them as P s children in plan.

e [fthe plan is too long or no method applies to problem P, then
pop P from stack and remove P and its siblings from the plan.

Given appropriate knowledge, HPD mimics a deterministic
procedure, but 1t falls back on search when needed.

13

Matching an HPN Method

Consider the HPN method for getting one block on top of another:

((on 72X ?7Y)
:conditions ((block ?X) (block ?Y))
:subproblems (((clear ?Y) (holding ?X)) ((stack ?X 7Y)))
:unless-goals ((on 7Y ?ANY) (ontable 7Y)))

Suppose the top problem 1s ((on A B) (on B C)) and the state 1s:

((block A) (block B) (block C) (ontable A) (ontable B) (ontable C)
(clear A) (clear B) (clear C) (hand-empty))
Here the head (on ?X ?Y) matches in two different ways:

* (on A B) matches with bindings ?X — 4 and ?Y — B
* (on B C), matches with bindings ?X — Band 7Y — C

But the first match fails because the runless-goals condition,
(on 7Y ?ANY), matches a goal, (on B C), that 1s not satisfied.

14

Demonstrations of HPD’s Abilities

To demonstrate HPD’s abilities, we developed HPN knowledge
bases for three planning domains:

* Blocks World — Changing an initial layout to a target layout
* Six methods, four operators, six predicates, twenty problems

* Logistics — Transporting packages from initial to target locations
* Seven methods, six operators, nine relations, ten problems

* Depots — Moving crates between pallets and stacking them
» Eight methods, five operators, twelve predicates, ten problems

For every problem 1n each domain, 1t found a hierarchical plan
(from 4 to 18 steps) without backtracking.

This shows HPNs can represent general procedures effectively.

15

Lesion Studies of HPD Planning

Scatter plot that compares effort by HPD programs with both state
and goal conditions to one with only state conditions.

Each axis shows
CPU time on a
logarithmic scale.

Each point is an
average of 30
separate runs.

Only state conditions

L _
Al ///
e ad
[I Eb%//
[| o oo -
o -
0 | mE = ‘D)]D
|| - O /.//
m B ///
— - ﬂ.//./
!/
.. m Blocks World
0 m o Logistics O
© & Depots °
g
m
© T T T T 1
0 0.5 1 1.5 2

2.5

State and goal conditions

16

Lesion Studies of HPD Planning

Scatter plot that compares effort by HPD programs with both state
and goal conditions to one with only goal conditions.

Each axis shows
CPU time on a
logarithmic scale.

Each point is an
average of 30
separate runs.

Only goal conditions

® oge® *

o oo

Blocks World g
Logistics O
Depots °

2 2.5 3 3.5 4 4.5

State and goal conditions

17

Scaling Studies of HPD Planning

Scaling curves that show time to solve Blocks World problems for
different HPD programs as function of number of irrelevant blocks.

4.5
1

x
L

Each curve shows
CPU time on a

log(CPU secs x 1074)
3.5
]

o . Both —u
logarithmic scale. 9 State oo
. . o~ 4 Goal o—o

Each point 1s an Neither oo

average of 30
separate runs. "~

NEm—— s ——

0 1 2 3 4 5 6 7
Number of irrelevant blocks

18

Scaling Studies of HPD Planning

Scaling curves that show time to solve Blocks World problems for
different HPD programs as function of number of interacting goals.

Both —u
< | State O—F1

Goal o—e
Neither o o

Each curve shows
CPU time on a
logarithmic scale. 0

log(CPU secs x 1074)
3.5
1

Each point is an
average of 30 -
separate runs.

1 1 1 1
0 1 2 3 4 5 6 7 8 9 10
Number of interacting goals

Relation to Earlier Research

The theory of hierarchical problem networks incorporates key
1deas from the previous literature:

* Procedural knowledge 1s organized into modular, hierarchical
methods (Slagle, 1963; Lloyd, 1984; Nau et al., 2003)

* But HPNs state how to decompose problems, not tasks or goals

* Knowledge can specify what goal orderings are acceptable
(Laird, 2012; Minton, 1988; Goldman & Kuter, 2019)

* But HPNs incorporate goal constraints into methods themselves

* Problem solving decomposes problems into subproblems
(Newell et al., 1960; Jones & Langley, 2005; Marsella, 1993)

* But HPNs emphasize procedures rather than heuristic search

Thus, the theory offers a new and promising alternative for
knowledge-based planning.

20

Comparison to Other Frameworks

Hierarchical problem networks have similarities to earlier planning
frameworks, but they also introduce important differences.

REPRESENTATIONAL AND Classic HTN HGN HPN
PROCESSING ASSUMPTIONS Planners | Planners | Planners | Planners
Generate sequential plans that achieve goals ° ° ° °
Decompose complex activities hierarchically o ° ° °
Methods require that relations hold in state o ° ° °
Methods indexed by goals they achieve o o ° °
Decompose problems into subproblems o o o °
Methods require that goals are not unsatisfied el o o °
Methods are linked to primitive operators o o o °

This table compares HPNs with HTNS, HGNs, and classic planners
along seven dimensions that distinguish them.

21

Plans for Future Work

In future research, we plan to augment the HPN theory and its
implementation in HPD to:

* Favor methods with fewer unsatisfied goals in subproblems
* This should reduce the current reliance on state conditions

* Allow OR branches in HPNs for nondeterministic outcomes
* This should support information-gathering operators

* Incorporate durative operators with temporal constraints
* This will support procedures that include parallel actions

* Integrate HPN problem solving with partial-order planning
* Use methods if available but chain backward when needed

The last extension may hold the key to learning state and goal
conditions on HPN methods analytically.

22

Summary Remarks

This talk introduced hierarchical problem networks, a new
representation for procedural expertise that:

* Specifies how to decompose problems into subproblems
* Includes state conditions that constrain bindings on variables

* Includes goal conditions that constrain order of goal processing
We also described HPD, an planning architecture that:

* Includes an interpreter that generates hierarchical plans
* Mimics deterministic procedures given the right knowledge

» Falls back on search when methods are lacking conditions

Experiments 1dentified how state and conditions reduce search
and aid scaling to problem complexity.

23

